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ABSTRACT 
Previous research demonstrated the ability for users to accurately 
recognize Spatiotemporal Vibrotactile Patterns (SVP): sequences 
of vibrations on different motors occurring either sequentially or 
simultaneously. However, the experiments were only run in a lab 
setting and the ability for users to recognize SVP in a real-world 
environment remains unclear. In this paper, we investigate how 
several factors may affect recognition: (1) physical activity 
(running), (2) cognitive task (i.e. primary task, typing), (3) 
distribution of the vibration motors across body parts and (4) 
temporality of the patterns. Our results suggest that physical 
activity has very little impact, specifically compared to cognitive 
task, location of the vibrations or temporality. We discuss these 
results and propose a set of guidelines for the design of SVPs.  

KEYWORDS 
Tactile feedback; spatiotemporal vibrotactile pattern; wearable 
computing; physical activity; cognitive load. 
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1 INTRODUCTION 
Vibration motors are commonly used to convey information, such 
as notifications [1,27], in a discreet, eyes-free and private manner. 
This modality is especially suitable for wearable devices, as they 
usually are in contact with the skin. By adding multiple vibration 
motors to a device, we can generate Spatiotemporal Vibrotactile 
Patterns (SVP): succession of vibrations, happening on different 
motors arranged in different locations on the body. Such patterns 
are usually richer than non-spatial temporal patterns, as they can 
convey more information (e.g. direction [28], or draw meaningful 
symbols). 
Researchers have previously investigated the design of rich SVP, 

specifically with phone-sized devices held in the palm of the hand 
[1,27,29,30]. Most relevant to the present work, Alvina et al. [1] 
investigated different body parts, i.e. palm, arm, thigh and waist, 
and proposed a set of SVP that achieved around 80% recognition 
accuracy. However, these works were all conducted in a lab 
setting, where participants only had to focus on the recognition 
task. As a result, the effectiveness of SVPs remains unclear in a 
real-world scenario where participants are likely to have their 
attention focused on some other primary tasks (e.g. walking in the 
street or writing a text). 
Possible primary tasks usually combine two types of activities: (1) 
physical activity, e.g. walking or running; (2) cognitively 
demanding task, e.g. reading a map or checking their 
surroundings. To design easily recognizable SVP, one must 
understand how both may have an impact on pattern recognition. 

 

Figure 1. We investigated multiple distributions of our four 
vibration motors across body parts. Vibration motors layout 
for the (a) 1-Device, (b) 2-Devices and (c) 4-Devices conditions. 
Note: the 1-Device silhouette shows horizontal mirrored 
positions, as the arm is shown with palm facing the viewer and 
not in resting position. 

While previous work focused on single device vibration patterns, 
in this paper, we investigate SVPs leveraging several devices worn 
on different locations on the body. The recent releases of many 
affordable wearable devices on the market open new perspectives 
for cross-device vibration patterns; happening on multiple body 
parts, potentially simultaneously. To explore different possible 
distributions across body parts, we designed three sets of devices 
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(see Figure 1): a phone-sized device with a 2×2 grid of vibration 
motors, two wrist-worn devices with 2 vibration motors on each, 
and four smaller devices worn on both wrists and ankles, with one 
motor on each device. We explored the recognition accuracy of 
our SVPs in the context of physical activity and cognitively 
demanding tasks. As an additional factor, we considered the 
temporality of the patterns, i.e. whether vibration happens 
simultaneously or sequentially on the different motors. 
In our first experiment, we show that the distribution of the 
vibration motors across body parts and temporality of the patterns 
(sequential or simultaneous) have a significant main effect on 
recognition. However, we did not observe any effect of the 
physical activity (standing vs. running).  In our second 
experiment, we consider a cognitively demanding task (sitting vs. 
typing) and find out that pattern recognition is strongly affected by 
all our three independent variables. 
Based on the results from both experiments, we designed 
guidelines useful both for researchers willing to investigate 
realistic environments, and for the design of cross-device SVP. 
The contribution of this paper is thus three-fold: 

1. Empirical results on the effect of physical activity and 
cognitive load on pattern recognition gathered through 
two user experiments, 

2. Empirical results on the relative impact of body location 
and temporality for SVPs, 

3. A set of guidelines both for researchers willing to 
investigate realistic environments (i.e. for everyday life), 
and about the design of cross-device SVP. 

2 RELATED WORK 

2.1 Temporal Vibrotactile Patterns 
The literature on non-spatial temporal vibrotactile pattern—i.e. 
patterns involving a single point of vibration—showed an effect of 
the intensity and the frequency of vibrations on perception 
[5,6,10,15]. The duration of each vibration has also been 
extensively studied. Specifically by Saket et al. [23] who 
suggested the use of 600 ms vibrations separated by 200 ms. Such 
a 200 ms gap was then reused by Cauchard et al.   [7] and Qian et 
al. [20]. 

2.2 Spatiotemporal Vibrotactile Patterns 
SVPs have been suggested for many different contexts, such as 
phone notifications [1,27,30], or for directing visual attention [13]. 
Wang et al. [26] proposed a meta-study that compared the 
efficiency of tactile signal perception for detection, discrimination 
and identification tasks. They suggested that accuracy would drop 
if users had to detect precise locations or directions of SVPs. 
SemFeel [30] is one of the earliest work about SVPs on phones, 
with users keeping the phone in the palm of their hand. This work 
led to several other projects, e.g. T-Mobile [27], with phone kept 
in the palm. Yatani et al. [28] used a 3×3 grid on the back of a 
smartphone to deliver spatial information, and map 8 cardinal 
points with vibration. In a subsequent work, they [29] used a 
similar setup to provided vibrotactile feedback in addition to 
visual feedback. Alvina et al. used a similar layout in OmniVib [1] 

before reducing the number of motors to a 2×2 layout. Results 
from OmniVib suggests that spatial representation is not 
consistent across different body locations, and suggested to use 
SVPs where the precise localization of each motor would not be 
an important factor of the patterns. 
While all these projects did achieve satisfying levels of accuracy, 
they were all performed in a lab setting with users focusing on the 
task. For the case of OmniVib, an informal follow up study was 
done in which participants recognized a subset of the patterns 
while watching a movie. 

2.3 Tactile Perception across Body Parts 
Each body part has a different sensitivity to haptic stimuli. 
Previous work has provided estimations of the required distance 
between two motors to be accurately distinguished from each 
other. Gibson and Craig [11] measured gap detection on finger 
pad, finger base and palm, then on arm. Their results indicate 
important differences between body parts, with a minimal required 
gap 4.2 times higher on the arm than on the finger pad. The ratio 
of palm spacing to forearm spacing was 1:1.45. Alvina et al. [1] 
also considered four locations: palm, arm, thigh and waist and 
found recognition to be significantly easier to perform on arm and 
palm. 
The wrist is also a good candidate for SVP, as explored by 
[6,12,16,17,19]. However, precise localization of more than three 
points around the wrist is hard as suggested by Carcedo et al. [6]. 
Other locations, such as the waist [1,25] have been explored as 
well. In this work we decided to focus on a grid layout, which 
excluded circular layouts that work well on the wrist and waist. 
Vibration thresholds on ankle were tested by Bikah et al. [3], 
showing that the area is generally less sensitive than the others 
considered. 

2.4 SVP for Physical Activity 
Wearable devices are in close contact with the skin. Designing 
patterns for physical activity is therefore a logical step forward. 
Cauchard et al. [7] designed ActiVibe, a set of temporal 
vibrotactile patterns to show progress during exercise. Their set of 
patterns achieved 96% accuracy in a lab setting and over 88.7% in 
a longitudinal field study. Spelmezan et al. [24] demonstrated the 
usage of a simple SVP to help users correct their posture while 
snowboarding. 
Blum et al. [4] developed a system based on acceleration 
measurements to improve vibration perception while performing 
physical activity. This work was based on earlier work from 
Andersen et al. [2] which showed a correlation between detection 
of haptic stimuli and activity. Note that detection of such stimuli 
also greatly depends on the intensity of the vibration, as Blum et 
al. [4] pointed that their system was mostly helpful at low levels of 
stimulation.  
Roumen et al. [22] investigated the effect of physical activity on 
different modalities, including vibration and suggested that 
running or walking did not impair the users' ability to detect a long 
temporal pattern (20 seconds) at maximal intensity. Chapman et 
al. [9] investigated factors influencing the perception of tactile 
stimuli during movement, and suggest that a higher intensity 
improves detection. 



 

 

Pakkanen et al. [18] showed that users were less accurate and 
slower at perceiving low-amplitude vibrotactile stimuli on the 
wrist, leg, chest and back while biking than while resting. 

2.5 Pattern Recognition during Cognitively 
Demanding Task 

Chan et al. [8] investigated the effect of a few primary tasks, such 
as solving a puzzle, listening to specific keywords, all while trying 
to recognize temporal patterns. Their results suggest a longer 
reaction time, without a drop in accuracy. In this work, we focus 
on more complex patterns, as we consider SVPs that are more 
complex, and we also consider the temporality of the pattern. Our 
results suggest that the primary task also affects accuracy. 
To the best of our knowledge, this work is the first to investigate 
the effect of physical activity, cognitively demanding tasks, and 
temporality with SVPs using multiple distributions of the motors 
on the body. 

3 HARDWARE 
In our experiments, we consider three different possible 
distributions of the motors across body parts. Many previous 
works investigated the feasibility of such patterns on phone-sized 
devices [1,27,29,30]. However, with the emergence of affordable 
wearable devices, the option of having multiple small devices 
embedding vibration motors is a viable option. We thus decided to 
design three different sets of devices, each of them representing a 
specific distribution of the motors. 

3.1 Body Locations 
In this paper, we want to investigate the potential for rich SVPs on 
2×2 grid layouts. We investigated body locations in term of 
(a) sensitivity to tactile stimuli to increase accuracy, and 
(b) available real estate to maximize the gap between the vibration 
motors. For the 1-Device and 2-Devices distributions, we selected 
forearms as they offer the best compromise in terms of available 
real estate and tactile sensitivity. Palms were tempting candidates 
due to their unrivaled tactile sensitivity. However, wearing a 
device on the palm is cumbersome during virtually all daily 
activities.  We also investigated wrists—in particular with circular 
layouts [6,12,17] and grid layouts [14,16]—but discarded them 
due to poor performances during our pre-tests. For the 4-Devices 
condition we added ankles to maximize the distance between 
devices. 

3.2 Common Parts 
Each of the devices we used embeds a DF Bluno Beetle, an 
Arduino clone with an ATmega 328 (16 MHz) controller, working 
at 5V, with Bluetooth Low Energy Transmission. The DF Bluno 
draws power from a 3.7V LiPo Battery, with a DC Voltage 
Converter 3.3 to 5V between the battery and the controller. We 
connected between one and four vibration motors (coin-type 
Precision Microdrives 310-103, 1.2 cm diameter) to each 
microcontroller. For each set of devices, the device worn on the 
right hand would embed a small push button, used to measure 
reaction time. The motors were taped to the body to ensure 

unbroken skin contact. The phone-sized device with the RF Bluno 
is shown in Figure 2. 

3.3 Phone-sized Device (1 device, 4 motors) 
For our phone-sized device, we connected four vibration motors to 
the DF Bluno. The motors are set up in a 2×2 grid, with a 10 cm 
gap on the vertical axis, and a 5 cm on the horizontal axis (see 
Figure 3-b). The top motors were located exactly 2 cm below the 
palm, close to the joint, on the back of the wrist. This specific 
layout for the phone sized device could thus be adapted on most 
existing smartphones, e.g. iPhone 7 (138.3×67.1 mm) or iPhone 
7+ (158.2×77.9mm).  

 

Figure 2. Apparatus for the 1-Device condition. 

3.4 Wrist-worn Devices (2 devices, 2 motors) 
For these two devices, we vertically aligned two motors with a gap 
of 10 cm. The top motor was located 2 cm below the palm, close 
to the joint, on the back of the wrist (see Figure 3-c). The button 
was located on the device worn on the right wrist. 

 

Figure 3. We rely on (a) a general 2×2 grid layout. (b) Precise 
location of all motors for the 1-Device condition [mirrored], (c) 
TR, BR on the left wrist for the 2-Devices condition and (d) 
BR on the left ankle for the 4-Devices condition. Note: the 
TL/BL motors for the 2-Devices condition are similarly 
located. For TL and TR in 4-Devices condition, the precise 
location is as TR in (c). 

3.5 Single Motor Devices (4 devices, 1 motor) 
The four devices were worn on both wrists and ankles. Each only 
embedded one motor that was located at the back of the wrist or 
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ankle (see Figure 3-d). The different layouts are summarized in 
Figure 1 and Figure 3. 

4 SET OF PATTERNS 
In this paper, we focus on a 2×2 grid. Previous works suggests that 
a 2×2 grid layout exposes a good tradeoff between expressivity 
and accuracy [1]. 

 

Figure 4. Set of SVPs used in both experiments for the 
"sequential" temporality condition. Numbers shows the order 
in which the motors were activated. 

 

Figure 5. Set of SVPs used in our experiment for the 
"simultaneous" temporality condition. Dots in red indicate 
that the corresponding motor is activated. 

We defined the following rules to design our patterns: 

1. Each pattern is a sequence of three vibrations, played 
simultaneously or sequentially. 

2. All the vibrations in a pattern happen on different 
motors. 

Additionally, since we include the temporality as a factor—i.e. 
whether the vibrations are happening simultaneously or 
sequentially—we included additional rules for both levels of the 
factor. For sequential patterns, we always start the patterns from 
the same motor, as starting from different motors would make the 
pattern easier to distinguish, and therefore to ultimately identify. 
By convention, we start from the bottom-left motor, which is thus 
located either on: 

• The bottom left motor on the right wrist, for our device 
with a 2×2 grid. 

• The bottom motor on the left wrist, for our configuration 
with two devices with 2 motors disposed on the vertical 
axis. 

• The motor on the left ankle device for our configuration 
with four devices. 

By following these rules, we generated six different patterns, 
shown in Figure 4. 
For simultaneous patterns, we decided to activate three motors at 
the same time, therefore we use all the four possible combinations 
as seen in Figure 5. 
 

5 EXPERIMENTS 
We conducted two experiments: one to investigate the effect of 
physical activity of perception, and one to find out how 
cognitively demanding tasks affect perception. In both 
experiments, participants had to recognize SVPs. The experiments 
share many similarities that we describe in this section. 

5.1 Common Apparatus 
The experiments were performed with specially designed wearable 
devices described in the Hardware section. After each stimulus, 
participants had to select the pattern they thought corresponded to 
the stimulus by using our experimental interface on an iPad mini. 
We used an iPhone to run our experimental software, which would 
send the stimuli to the wearable devices using Bluetooth Low 
Energy (BLE). 

5.2 Common Procedure 
At the beginning of both experiments, participants filled a pre-
experimental questionnaire, including demographics data. The 
experiment was then divided in three sections, one for each set of 
devices (i.e. distribution of the motors). The experimenter would 
assist the participant in putting the devices on the corresponding 
body parts. The participants would then be trained with each of the 
patterns of our two sets (10 patterns). They would then perform 
both physical activities. Both sets of patterns were tested in one 
block, with two repetitions of each pattern per block. There were 
two blocks for each set of devices × activity. 

5.3 Common Task and Stimuli 
In both experiments, our participants had to recognize the correct 
pattern from our set of patterns (see Figure 4 and Figure 5). After 
the stimulus was presented, participants would first click on the 
button located on the device worn on the right wrist as soon as 
they identified the pattern, then would input their selection using 
our interface on the iPad Mini. No feedback was provided after 
selection. For each pattern, vibration motors were activated for 
600 ms, followed by a 200 ms gap for the sequential condition as 
recommended by Saket et al. [23].The playback duration of a 
stimulus is thus 600ms for the simultaneous condition, and 
2200 ms for the sequential condition. There was a pause of a 
randomized duration between 15-25 seconds between trials. 

6 EXPERIMENT 1: PHYSICAL ACTIVITY 
In this first experiment, we investigated how physical activity 
impacts perception of spatiotemporal patterns across different 
motors distributions and temporality. The previous section 
summarizes part of the apparatus, the procedure, task and stimuli. 
We applied Greenhouse-Geisser sphericity correction when 
needed, which corrects both p-values and the reported degrees of 
freedom. 

6.1 Primary Task 
The primary task was to run on a treadmill at a speed of 7 km/h. 
The speed was selected to ensure that all participants needed to 
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run but would not get too fatigued. We included a control 
condition during which participants stood. 

6.2 Apparatus 
During the running condition, participants run on a FreeMotion 
Reflex T 11.8 Treadmill. The experiment was conducted in the 
gym of the local university. Air-conditioning ensured a stable 
25°C temperature. 

6.3 Participants 
Twelve participants (3 female), aged 20 to 31 (M=24.6 SD=3.17) 
were recruited from the university community. All participants 
were right handed. 

6.4 Design 
A 3×2×2 within-subject was used with three independent 
variables: motors distribution { 1 device with 4 motors, 2 devices 
with 2 motors, 4 devices with 1 motor }, temporality 
{ simultaneous, sequential } and physical activity { standing, 
running }.  The motors distribution was counterbalanced with 
Latin Square, the physical activity was fully counterbalanced and 
the temporality was randomized within blocks. We measured 
recognition time, which is the sum of the time taken to present the 
stimulus (2200 ms for sequential and 600 ms for simultaneous) 
and of the time it took participants to press the small button. 
Participants were instructed to only press the button when they 
were certain they correctly identified the pattern. We did not count 
the time to select their answer on the iPad as part of the 
recognition time. We also measure recognition rate (referred to as 
accuracy). A trial was considered as successful if the participant 
could correctly identify the presented stimulus. 
Each participant performed the experiment in around 1 hour and 
40 minutes, with breaks between blocks if needed. Our overall 
design is as follows: 12 participants × 3 motors distributions × 2 
physical activities × [6+4 (stimuli)] × 2 blocks × 2 repetitions per 
block = 2880 trials (240 trials per participant). 

 

Figure 6. Average recognition rate across different conditions 
in Experiment 1. Error bars show .95 confidence intervals. 

 

 

6.5 Results 
We used three-way ANOVA with repeated measures on all factors 
to get our main effects. For post-hoc comparisons, we used 
pairwise t-tests with Bonferroni correction.  
6.5.1 Recognition Rate (Accuracy). The average accuracy for the 
experiment was 88.9%. We observed a significant main effect of 
Motors Distribution on Accuracy (F2,22=127.2, p<.0001). Pairwise 
comparison showed that both 2-Devices (M=94.4%) and 4-
Devices (M=94.8%) conditions were more accurate than 1-Device 
(M=77.7%, both p<.001). Temporality also had a significant main 
effect (F1,11=59.9, p<0.0001), with the Sequential condition 
(M=96.8%) performing better than Simultaneous (M=77.1%). 
We also observed a Motors Distribution × Temporality interaction 
(F2,22=45.7, p<.0001). The individual performance of each 
condition is summarized in Figure 6. 
Note that we did not observe any main effect of Activity or any 
interaction involving interaction. 

 

Figure 7. Average recognition time across all conditions in 
Experiment 1. Error bars show .95 confidence intervals. 

6.5.2 Recognition Time. A three-way ANOVA found a 
significant main effect of Motors Distribution on recognition time 
(F2,22=5.83, p<.001). The 2-Devices configuration offers the best 
recognition time (M=2.17s), which is significantly faster than both 
4-Devices (M=2.33s, p<.001) and 1-Device (M=2.54s, p<.001). 
Temporality also had a significant main effect (F1,11=132.4, 
p<.0001), with Simultaneous condition (M=1. 70s) being faster 
than Sequential (M=2.68s). Motors Distribution × Temporality 
interaction (F1.28,14.08=4.56, p=.04). Similarly to accuracy, we did 
not find any main effect or interaction involve Activity on 
recognition time. The recognition times for each condition are 
shown in Figure 7. 

6.6 Discussion 
While the accuracy of pattern recognition for the standing activity 
and sequential temporality was high, with 1-Device achieving 
93.4% on average, 2-Devices 99.3% and 4-Devices 97.9%, the 
accuracy for simultaneous condition shows that our participants 
were not able to recognize patterns for the 1-Device distribution 
(i.e. phone-sized configuration), with an average recognition rate 
of only 54.2%. 2-Devices (87.1%) and 4-Devices (90.1%) did 
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perform better. These performances explain the interaction Motors 
Distribution × Temporality we observed. 
The time performance of simultaneous patterns shows a generally 
better recognition time of these patterns over sequential ones. 
However, as we consider the whole stimulus playback time + 
reaction time, simultaneous temporality has a strong advantage 
here. If we only consider reaction time, the average reaction time 
(not including playback time) for sequential patterns is lower than 
simultaneous (0.47 s vs. 1.10s). We argue that in the real world, 
what matters is the total time to convey information, which is why 
we included the time to present the stimulus. The differences 
between different motors distributions, while significant, are not 
so important: there is only a 370 ms difference between 1-Device 
(slowest) and 2-Devices (fastest) configurations. 
Our results show that simultaneous SVP could be recognized at 
high accuracy (~90%) using the 2-Devices (87.1%) and 4-Devices 
(90.1%) configuration, and would convey information faster than 
traditional sequential patterns. By comparing with 1-Device, we 
note that 1-Device is the condition with the lowest gaps between 
two motors, i.e. 10cm between two horizontal motors, which is 
likely the source of the low accuracy. 
Surprisingly, our results do not show any effect of the physical 
activity on the performance of our participants that is both in terms 
of time and accuracy. Roumen et al. [22] suggested a similar trend 
through a perception-only task (i.e. was the stimulus sensed or 
not). Our results show that it remains valid even with complex 
recognition tasks. Some previous work did highlight differences, 
but for low levels of stimulation [18]. We believe that since the 
vibration motors were strongly taped to the skin, prevented loss of 
contact, and therefore, variability of perceived vibrations, which 
could have impaired the recognition of SVPs. To design SVPs for 
daily activities, one may consider other primary factors than 
physical activity, at least on low to moderate levels. 

7 EXPERIMENT 2: COGNITIVELY 
DEMANDING ACTIVITY  

In this second experiment, we investigated the effect of a 
cognitively demanding task on identification of SVP across our 
motors distribution and temporality. The procedure, task and 
stimuli as well as common apparatus are presented in the 
Experiments section. 

7.1 Primary Task 
We selected a text-typing task1 because it is cognitively 
demanding. We asked our participants to prioritize typing over 
SVP recognition, and told them that their performances were 
being measured. We included a control condition where the 
participants were sitting on a chair. 

7.2 Apparatus 
Participants would perform the typing task on a MacBook Pro 
laptop (13", Early 2015, OS X 10.10.5). The experiment was 
conducted in a room with a desk and a chair, with air-conditioning 
ensuring a stable temperature of 25°C. 

                                                                    
1 https://www.goodtyping.com/test.php 

7.3 Participants 
Thirteen participants (6 females), aged 20 to 32 (M=26, SD=4.39) 
were recruited from the university community. All of them were 
right handed. They were all students and all declared to use a 
laptop computer daily. 

7.4 Design 
A 3×2×2 within-subject was used with three independent 
variables: motors distribution { 1 device with 4 motors, 2 devices 
with 2 motors, 4 devices with 1 motor }, temporality 
{ simultaneous, sequential } and activity { sitting, typing }.  The 
motors distribution was counterbalanced with Latin Square, the 
activity was fully counterbalanced and the temporality was 
randomized within blocks. We measured both recognition time 
and recognition rate (referred to as accuracy). 
Each participant performed the experiment in around 1 hour and 
40 minutes, with breaks between blocks if needed. Our overall 
design was as follows: 13 participants × 3 configurations × 2 
activities × [6+4 (stimuli)] × 2 blocks × 2 repetitions per block = 
3120 trials (240 trials per participant). 

7.5 Results 
We used the same statistical tests, post-hoc and corrections as in 
Experiment 1. 
 
7.5.1 Recognition Rate (Accuracy). Our three-way ANOVA 
showed a significant main effect of all the three factors on 
accuracy. We found a significant main effect of motors 
distribution (F2,24=82.7, p<.0001). Overall, participants were 
significantly less accurate with the 1-Device distribution 
(M=67.8%), than with 2-Devices (M=86.6%, p<.001) and 4-
Devices (M=88.8%, p<.001). We also found a significant main 
effect of Activity (F1,12=73.3, p<.0001), with participants 
performing better while sitting (M=89.7%) than typing 
(M=72.4%), and of Temporality (F1,12=133.5, p<.0001), where it 
was easier for participants to recognize sequential patterns 
(M=88.1%) compared to simultaneous ones (M=70.4%). 

 

Figure 8. Average recognition rate across conditions in 
Experiment 2. Error bars show .95 confidence intervals. 
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We also observed a Motors Distribution × Activity interaction 
(F2,24=4.38, p=.023), and a Motors Distribution × Temporality 
interaction (F2,24=19.51, p<.0001). The individual performance of 
each condition is shown in Figure 8. 

 

Figure 9. Average recognition time across conditions in 
Experiment 2. Error bars show .95 confidence intervals. 

7.5.2 Recognition Time. A three-way ANOVA showed a 
significant main effect of Motors Distribution on recognition time 
(F2,24=5.28, p=.012). A post-hoc comparison showed significant 
differences between all conditions (all p<.05): our participants 
were faster at recognizing patterns with the 2-Devices condition 
(M=2.43s) than with 4-Devices (M=2.59s) and 1-Device 
(M=2.88s). Temporality also had a main effect (F1,12=19.3, 
p<.001): our participants had a smaller recognition time with 
simultaneous patterns (M=2.03s) compared to sequential ones 
(M=2.95s). We did not find any other interaction or any effect of 
Activity. Figure 9 shows the individual performance of each 
condition. 

7.6 Discussion 
Our results show that user’s primary task had an impact on 
recognition rate. We observe an average decrease of performance 
of 17.3 percentage points (from 89.7% to 72.4%) with the 
additional cognitive load. As a consequence, researchers may want 
to take a cognitively demanding task into consideration when 
designing experiments on pattern recognition. 
At first glance, it may look like the recognition accuracy of SVPs 
for the simultaneous level of Temporality (70.4% accuracy). 
However, some specific sets of conditions did achieve good 
accuracy: for the 2-Devices configuration, recognition rate of 
simultaneous patterns was 77.5%, while it reaches 84.4% with the 
4-Devices configuration. 
The overall acceptable accuracy of the 4-Devices distribution can 
likely be explained by the fact that users can quickly process the 
vibration just by identifying the body part upon which the 
vibration is happening, instead of having to decide from which 
specific motor it came from. 
During the experiment, 4/13 participants also reported that they 
needed to focus on the vibration to be able to correctly recognize 
the pattern and that they may not be that attentive in a real-world 

scenario. This suggests that the loss of accuracy might be even 
worse than what we observed. 

8 DISCUSSION AND GUIDELINES 
Our experiments allow us to get a clear idea of the role of posture, 
cognitive demand of the primary task, motors distribution, and 
temporality, in the design of SVPs. In this section, we will discuss 
guidelines and suggestions on how to apply these results. 

8.1 SVP for everyday life 
Our results show that low to moderate physical activity does not 
impact recognition of SVPs in general, as it does not have an 
effect either on recognition accuracy or time. We believe that 
these results are valid for general everyday life activities, during 
which people are likely to walk or brisk walk. The results are 
similar to the ones obtained by Roumen et al. [22]. Many previous 
works [7,24] considered more intense levels of activity. Our 
results suggest that designers and researchers interested in 
validating SVPs designed for everyday life may not necessarily 
need to focus on physical activity, but should consider the 
cognitive demand of a potential primary task.  

8.2 Posture (Sitting vs. Standing) 
In Experiment 1, our control condition is having our participants 
standing, while in Experiment 2, our participants are sitting. Since 
the protocol of both experiments is similar, we run a t-test to find 
potential differences. In Experiment1-Standing condition, our 
participants achieved 89.4% with a time of 2.38s, vs. 89.7% and 
2.53s for Experiment2-Sitting. T-tests on independent samples did 
not show any significant differences for both accuracy (p=.45) and 
time (p=.58). 

8.3 Cognitively Demanding Task 
Our second experiment highlights the strong effect of primary task 
on recognition. Therefore, researchers interested in validating lab 
results in more realistic conditions may want to include 
cognitively demanding tasks as a factor for their experiment: we 
observed an accuracy drop from 89.7% to 72.4% when 
participants were typing text. The recognition time only increased 
from 2.53s to 2.74s. We believe that more demanding tasks would 
see a higher drop of accuracy. Under cognitively demanding task, 
the interaction between Devices and Activity suggests that using 
multiple devices may mitigate this drop. In the 4-Devices case 
specifically, users did not need to discriminate different locations 
on the same device, which led to a higher accuracy of 84.4% while 
typing. 

8.4 Generalizability to other body parts 
Recognition greatly varies between body parts. In this paper, we 
focus on the part near the wrists (and ankles to a lesser degree). 
Results from Alvina et al. [1] showed that Palm and Arm may 
have comparable sensibility to SVPs, suggesting some potential 
for generalizability. However, it is likely that recognition would be 
harder on body parts such as trunk, waist, thigh and legs.  
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8.5 Temporality 
Delivering multiple vibrations at the same time allows conveying 
information faster, but at the cost of fewer possible patterns and 
lower recognition rate. Therefore, simultaneous patterns might be 
worth considering on a limited set of patterns (in our case we had 
4 patterns).  Given our results, we would advocate not using 
simultaneous SVPs with the 1-Device - 4 motors condition, and 
generally not as long as a cognitively demanding task is being 
performed. On the other hand, the 4-Devices distribution achieved 
an acceptable level of accuracy even during the typing task 
(80.7%), proving that simultaneous SVPs may be used. The gap 
on recognition accuracy was also documented by Carcedo et al. 
[6] with a wristband. 

8.6 Motors Distribution across Body Parts 
We considered three different motors distributions across body 
parts, ranging from a single phone-sized region with four motors 
to four small wearable devices on each wrist and ankle. Our 
results show that recognition was greatly impacted by the motors 
distribution on the body.  
 
8.6.1 Phone-sized Single Area (1-Device).  Overall, we noticed 
that the phone-sized distribution usually achieves lower accuracy. 
This is likely due to the small horizontal gap between two devices 
that makes it hard for users to precisely locate the motor at a given 
time. This is especially true in Experiment 2-Typing condition. 
Our results would suggest that some previous research on SVPs 
may not be applicable in real-life scenarios where the users are 
performing a primary task. However, this specific form factor still 
offers good performance across physical activity and if sequential 
SVPs are used. There are still a lot of everyday life scenarios in 
which this specific configuration would perform well. 
 
8.6.2 Wrist-worn Devices (2-Devices). The 2-Devices 
distribution achieves good accuracy for most of the conditions, 
except one: Typing-Simultaneous. In any other condition, the 
average accuracy is always above 86.7%, up to 98.3%. Therefore, 
it is a form factor to consider. Likely, simultaneous SVPs may be 
limited by the difficulty of detecting whether two motors are 
vibrating on the same side. 
 
8.6.3 Wrist/ankle-worn Devices (4-Devices). Our 4-Devices 
condition is the only one to perform well (above 80%) under all 
the values of our other independent variables. 4-Devices is 
therefore the most robust motor distribution to convey 
information. The fact that each motor is located on the extremity 
of different limbs, i.e. that the distance between motors is 
maximized, can explain the good performance. More experiments 
would need to be done to determine whether a similar condition 
with other body locations would give similar results. Our current 
results do show that leveraging multiple small wearable devices to 
produce richer SVPs is a promising approach. 

9 LIMITATIONS 
For both experiments, we only considered low levels for both 
physical activity and cognitively demanding task. While this is 

generally representative of the kind of tasks performed during an 
average day, it does not provide insights for athletes [7,24] and 
more active users. Additionally, we did not consider any potential 
interaction between physical activity and cognitively demanding 
task. Activities like dance [21] usually combine both physical and 
cognitive load. 

10 CONCLUSION 
We presented two experiments investigating the effect of physical 
activity, a cognitively demanding task and temporality on 
recognition of spatiotemporal vibrotactile patterns. We found that 
all factors have an effect on recognition (time and/or accuracy), 
except for physical activity. We also considered three different 
distributions of our vibration motors: either a phone-sized device 
with a 2×2 grid, two wrist-worn devices with 2 motors, or four 
individual devices worn on wrists/ankles with one motor. The 
phone-sized condition was the most affected by task and 
temporality, while the four devices condition was the one 
performing well with every possible condition. As future work, we 
would like to evaluate more levels of activities and tasks, as well 
as consider different configuration for the multiple devices 
conditions. 
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